Ministry of Higher Education
Nile Higher Institute For Engineering and Technologv

Sanitary Engineering Project

$$
\begin{aligned}
& \text { Group } 1 \\
& \text { Prepared By }
\end{aligned}
$$

- Eslam Badr Mohamed HassanTomraz
- Abdelazez Sabry Mohamed Elmakhzangy
- Ahmed Hassan El sayed khashan
- Mahmoud Ahmed Ramadan Abdel Nasser
- Mohamed Morsi Khalifa Shaaban
- Menna Alla Ebrahim Mohamed Mostafa
- Adham mansour ebrahim mohamed
- Ahmed Adell Abdelmeged Abdallah

180237
170367
180167
180135
180177
180233
180066
180203

Supervisor

Proffessor. Dr .Kamal Radwan
Professor at Civil Department, Nile Higher Institute for
Engineering and Technology
Eng. Karim Taha
Teaching assistant at Civil Department, Nile Higher Institute for
Engineering and Technology

Contents

ABSTRACT	3
	4
1.1 THE PROBLEM	4
	4
1.3 EXISTING SOLUTIONS	4
1.4 DESIGN CONSTRAINTS	4
2 CUSTOMER NEEDS	5
3 GENERATED CONCEPTS	5
4 FINAL CONCEPT	5
5 Population and Water Consumption	6
5.1 Forecasting Population	6
5.2 DESIGN FLOW	7
5.3 SHORE INTAKE	8
5.4 RAPID MIXING TANK	12
5.5 POWER TANK	12
5.6 COAGULATION	12
5.7 SEDIMINTATION TANK	13
5.8 DESIGN OF RAPID SAND FILTER	16
5.9 Ground Tank	18
5.10 elevetaed Tank	20
5.11 DISTRIBUTION NETWORKS	21
5.12 WASTE WATER	24
6 CONCLUSION	26
7 REFERENCES	27

Abstract

This research project focuses on the examination of aquatic vegetation, the quality of water, its treatment, as well as the supply and distribution of water. Additionally, we analyze population estimates and water quantities. Furthermore, our investigation extends to the field of sewage treatment facilities, encompassing aspects such as sewage volume, wastewater treatment, collection, sanitation, the potential for wastewater reuse, and the volume of wastewater following the treatment process.

1- PROJECT DEFINITION

This project involves the construction of a water treatment plant and the design of both the water distribution network and the sewage network.

1.1 THE PROBLEM

The challenge at hand is to create a water treatment plant capable of supplying water to a city in both 2040 and 2060. This entails determining the appropriate number and sizes of pipes for the water distribution network to ensure efficient delivery to households, as well as identifying the optimal number and diameters of pipes for the sewage network.

1.2 STUDY OBJECTIVES

The primary objectives of this study are as follows:

- Designing a water treatment plant
- Planning the water distribution network
- Establishing the wastewater network design

1.3 EXISTING SOLUTIONS

For the water treatment plant, the existing solutions involve the use of pumping mechanisms, filters, and tanks to treat the water and produce clean, potable water suitable for human consumption. Regarding the distribution network, pipes, pumps, and elevated tanks are utilized to transport water to residential areas. In the case of the wastewater network, the design revolves around determining pipe slopes, utilizing gravity, and selecting appropriate diameters to convey the wastewater to the sewage plant.

1.4 DESIGN CONSTRAINTS

There are no specific design constraints or limitations identified for this project

2- CUSTOMER NEEDS and BACKGROUND

The customer's needs revolve around water treatment, extraction of drinking water, ensuring water delivery to the highest level in the distribution network, maintaining suitable water pressure during peak consumption hours, and efficient collection of wastewater from households for transport to sewage stations. These requirements should be met while ensuring economic viability and maintaining water quality.

3 -GENERATED IDEAS Water treatment plant:

The water treatment process involves treating water obtained from the source and disinfecting it by adding chlorine (CL2). Water distribution network: The design of the distribution network includes determining the appropriate pipe diameters to withstand pressure and ensure water reaches all areas of the city, even the farthest points. Wastewater network: The wastewater network is responsible for transporting wastewater from the city to the wastewater treatment plant.

4 -FINAL DESIGN

Water treatment plant: The final concept includes the utilization of pumps, filters, and tanks to treat water and produce purified water suitable for human consumption. Water distribution network: The distribution network involves the use of pipes, pumps, and overhead tanks to deliver water to residential areas. Sewage pipe network: The design of the sewage pipe network considers factors such as pipe slope and gravity, along with the selection of suitable pipe diameters for transporting wastewater to the treatment plant.

5-Population and Water Consumption

$$
\begin{aligned}
& \boldsymbol{P}_{1996}=60200 \text { capita } \\
& \boldsymbol{P}_{2006}=72000 \text { capita } \\
& \boldsymbol{P}_{2016}=87400 \text { capita }
\end{aligned}
$$

5.1- Forecasting Population

Arithmetic Method:

Year -	Population (P) ${ }^{\text {- }}$	$\Delta \mathrm{P} \quad$ -	ΔT -	$\mathrm{Ka}=\Delta \mathrm{P} / \Delta \mathrm{T}$ -
1996	60200			
2006	72000	11800	10	1180
2016	87400	15400	10	1540
				$\sum К \mathrm{~K}=2720$

$$
\begin{aligned}
& \text { Ka }(\text { average })=\sum K a / N=2720 / 2=1360 \\
& P_{n}=P_{o}+K_{a} * \Delta t \\
& P_{2040}=P_{2016}+1360 * \Delta t \\
& =87400+1360 *(2040-2016)=120040 \text { capita } \\
& P_{2060}=P_{2016}+1360 * \Delta t \\
& =87400+1360 *(2060-2016)=147240 \text { capita }
\end{aligned}
$$

Geometric method:

$$
\begin{aligned}
& K g(\text { average })=\sum K g / N=.04 / 2=.02 \\
& \ln \left(P_{n}\right)=\ln \left(P_{o}\right)+K g^{*} \Delta t \\
& \ln P_{2040}=\ln P_{2016}+K g * \Delta t
\end{aligned}
$$

```
ln}\mp@subsup{P}{2040}{}=11.379+0.02*24=11.85
P}\mp@subsup{P}{2040}{}=141350\mathrm{ capita
ln}\mp@subsup{P}{2060}{}=\boldsymbol{ln}\mp@subsup{P}{2016}{}+\boldsymbol{Kg*\Deltat
ln P
P2060}=208981.288 capita
```


Annual growth rate method

Year ${ }^{-}$	Population (P) ${ }^{-}$	Pn/P。 ${ }^{\text {P }}$	$\Delta \mathrm{T}-$	$\mathrm{m}=\left(\mathrm{Pn} / \mathrm{P}_{\mathrm{o}}\right) 1 / \Delta^{\text {I }}$	m-1
1996	60200				-1
2006	72000	1.196	10	1.0180	0.018
2016	87400	1.214	10	1.0195	0.0195
					\Km=. 04

Km (average) $=\Sigma K m / N=.04 / 2=.02$
$P_{n}=P_{o} *(1+m-1)^{\Delta t}$
$P_{2040}=P_{2016^{*}}(1+m-1)^{\Delta t}$
$P_{2040}=87400(1+0.02)^{24}=140577.4$ capita
$P_{2060}=P_{2016 *}(1+m-1)^{\Delta t}$
$P_{2000}=87400(1+0.02)^{44}=208890.6$ capita

Year	Arithmetic Method	Geometric method	Annual growth rate method	P average
2040	120040	141350	140577.4	133989.133
2060	147240	208981.2	208890.6	188370.6

5.2- Design Flow:-

For stage (1)(at 2040)
$q_{2040}=250 \mathrm{~L} / \mathrm{c} / \mathrm{d}$
$Q_{2040 \text { avg }}=P_{\text {avg } 2040}{ }^{*} q_{2040}$
$Q_{2040 \text { avg }}=133989.133 * \frac{250}{1000}=33497.28 \mathrm{~m}^{3} / \mathrm{d} \& 0.387 \mathrm{~m}^{3} / \mathrm{s}$

For stage (2) (at 2060):-
$q_{2060}=270 L / c / d$
$Q_{2060 \text { avg }}=P_{\text {avg } 2060}{ }^{*} q_{2060}$
$Q_{2060 \text { avg }}=188370.6 * \frac{270}{1000}=50860.062 \mathrm{~m}^{3} / \mathrm{d} \& 0.588 \mathrm{~m}^{3} / \mathrm{s}$

Flow	2040	2060
$Q^{Q a v}$	$0.387 \mathrm{~m}^{3} / \mathrm{s}$	$0.588 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\text {Max }}$ Monthly $=1.4^{*} Q_{a v}$	$0.5418 \mathrm{~m}^{3} / \mathrm{s}$	$0.8232 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\text {max }}$ daily $=1.8^{*} Q_{a v}$	$0.6966 \mathrm{~m}^{3} / \mathrm{s}$	$1.0584 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\max }$ hourly $=2.5^{*} Q_{a v}$	$0.9675 \mathrm{~m}^{3} / \mathrm{s}$	$1.47 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\text {Design }}$ $=1.1 * 1.4^{*} Q_{a v}$	$0.59598 \mathrm{~m}^{3} / \mathrm{s}$	$0.90552 \mathrm{~m}^{3} / \mathrm{s}$

5.3- Shore Intake

- For stage (2) at 2060:-
$\boldsymbol{Q}_{\boldsymbol{d}}=.905 \mathrm{~m}^{\mathbf{3}} / \boldsymbol{s e c}$
Design of Conduit Pipes :-
$Q_{\boldsymbol{d}}=\boldsymbol{A * v}$
Assume v $=1.0 \mathrm{~m} / \mathrm{sec} \quad \& A=.905 \mathrm{~m}^{2}$
$A=N \frac{\pi \varphi^{2}}{4} \quad \& \quad$ Assume $N=3$

$$
\begin{gathered}
905=3 * \frac{\pi \varphi^{2}}{4} \quad \varphi=.61 \mathrm{~m} \rightarrow \varphi=700 \mathrm{~mm} \\
v_{-} \text {act }=Q / A=0.905 / 1.15=.78 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

- Check for first stage 2040:-
$Q_{d}=.59 m^{3} / s e c$

$$
v=\frac{Q_{d}}{N * \frac{\pi \varphi^{2}}{4}}=\frac{.595}{2 * \frac{\pi *(0.7)^{2}}{4}}=<(0.76 \sim 1.5) \mathrm{m} / \mathrm{sec}
$$

Stage (1): 2甲 700
Stage (2):3 $\boldsymbol{\varphi} 700$

- Head Losses Through The Pipe:-

1-For stage (2) at 2060

Assume:-

$$
L=100 m \quad \& \quad f=.04
$$

Friction losses:-
$h f=\frac{f l v^{2}}{2 g \emptyset}=\frac{.04 \times 100 \times .78^{2}}{2 \times 9.81 * .7}=17.7 \mathrm{~cm}$
$h \min =.2 * h f=.2 * 17.7=3.5 \mathrm{~cm}$
Total losses $=\boldsymbol{h}_{\boldsymbol{f}}+\boldsymbol{h}_{\text {min }}$
Total losses $=17.7+3.5=21.2 \mathrm{~cm}$
Water level in sump = water level in canal - total losses
Water level in sump $=15-.212=14.7 \mathrm{~m}$
2-For stage (1) at 2040
Friction losses:-
$h f=\frac{f l v^{2}}{2 g \emptyset}=\frac{.04 \times 100 \times .766^{2}}{2 \times 9.81 * .7}=16.3 \mathrm{~cm}$
$h \min =.2 * h f=.2 * 16.7=3.2 \mathrm{~cm}$
Total losses $=\boldsymbol{h}_{f}+\boldsymbol{h}_{\text {min }}$
Total losses $=16.3+3.2=19.5 \mathrm{~cm}$

- Design of screen:-

Assume:

$$
\begin{aligned}
& B=1.5 \varphi \quad S=3 \mathrm{~cm}=0.03 m \quad a=1.5 \mathrm{~cm} \\
& B=N^{*} S+\boldsymbol{a}(N-1)
\end{aligned}
$$

$1.5 * .7=3 N+1.5 N-1.5 \quad N=23.6 \simeq 24$ no.of bars $24-1=23$
Losses of screen

$$
\begin{aligned}
& h_{\text {screen }}=\frac{1.4\left(v_{t h}^{2}-v_{\text {app }}\right)}{2 g} \\
& v_{\text {th }}=\frac{Q_{d}}{n(d \times s \times N) / \sin (\theta)} \\
& \text { - } d=H . W . L \text { - Bed Level } 23.5-20=3.5 \\
& \text { } s=3 \mathrm{~cm} \\
& \text { - } \theta=60 \\
& \text { - } n=3 \\
& \text { - } N=24 \\
& \quad v_{\text {app }}=\frac{Q_{d}}{n \times l \times d}=\frac{.905}{3 \times 10.5 \times 3.5}=.082 \mathrm{~m} / \mathrm{s} \\
& h_{\text {screen }}=\frac{1.4\left(.103^{2}-.082^{2}\right)}{2 * 9.81}=2.7 \times 10^{-4}=.002 \\
& \quad<30 \text { Ok }
\end{aligned}
$$

- Design of Force main:-

Assume $\nu=1.5 \mathrm{~m} / \mathrm{s}$

1-For stage (2) at 2060

$Q_{d}=A * V \quad \& .905=1.5 * A$
$A=.603 m^{2}=\frac{\pi \emptyset^{2}}{4} \& \emptyset=.87 \simeq 900 \mathrm{~mm} \quad A_{\text {acc }}=.63 \mathrm{~m}^{2}$
$v_{a c}=.905 / .63=1.4 \mathrm{~m} / \mathrm{s} \quad O K$
Head loss (hl)

$$
s=\left(\frac{Q_{d}}{.278 \times c \times D^{2.63}}\right)^{\frac{1}{54}}=\left(\frac{.905}{.278 \times 120 \times .9^{2.63}}\right)^{\frac{1}{54}}=2.09 * 10^{-3}
$$

${ }_{f}^{h}=S^{*} L=2.09 * 10^{-3} * 100=.209 m$
$h_{m}=.2 h_{f}=.041 m \quad \& h L=.209+.041=.25 m$

2-For stage (1) at 2040

$$
\begin{aligned}
& A_{a c c}=.63 m^{2} v_{a c}=.595 \\
& s=\left(\frac{Q_{d}}{278 \times c \times D^{2.63}}\right)^{\frac{1}{54}}=\left(\frac{.944 \mathrm{~m} / \mathrm{s}}{.278 \times 120 \times .9^{2.63}}\right)^{\frac{1}{54}} \text { OK } \\
&=9.6^{*} * 10^{-4}
\end{aligned}
$$

$$
h_{f} S^{*} L=9.6^{*} 10^{-4 *} 100=.096 \mathrm{~m}
$$

$h_{m}=.2 h_{f}=.0912 m \quad \& h L=.0912+.096=.1152 m$

- Design of low lift Pumps

1-For stage (2) at 2060

- $Q_{d}=.905 \mathrm{~m}^{3} / \mathrm{s}$ \& 905lit/s
- Assume $Q_{\text {pump }}=300$ lit/s
no of pump $=\frac{Q_{d}}{Q_{\text {pump }}}=\frac{905}{300}=3.016 \quad$ using $N=5$
$\boldsymbol{n}_{\text {working }}=5$ working +3 stand by
$Q_{\text {pump }}=\frac{905}{5}=181 \mathrm{~L} / \mathrm{s}$
- Head of Pump
$H L=h_{\text {static }}+h_{\text {dynamic }}$
$H_{\text {static }}$

$$
\begin{aligned}
& =\text { berm level - water level in sump } \\
& +(6-8) m
\end{aligned}
$$

$$
\begin{aligned}
& 24.5-22.5+6=8 \mathrm{~m} \quad h_{\text {dynamic }}=0.25 \mathrm{~m} \\
& H L=8+.25=8.25 \mathrm{~m} \\
& H t=8.25+0.25+0.02+.212=8.48 \mathrm{~m} \\
& H . P=\frac{\gamma * Q_{d} * H_{t}}{75 \eta_{1} \eta_{2}}=H . P=\frac{1 * 181 * 8.48}{75 * .63}=32.48 \mathrm{HP}
\end{aligned}
$$

2-For stage (1) at 2040

- $Q_{d}=.595 \mathrm{~m}^{3} / \mathrm{s} \& 595 / \mathrm{s}$
- Assume $Q_{\text {pump }}=300 \mathrm{lit} / \mathrm{s}$
no of pump $=\frac{Q_{d}}{Q_{\text {pump }}}=\frac{595}{300}=1.98$ using $N=2$

$$
n_{w o r k i n g}=2 \text { working }+2 \text { stand by }
$$

- Design of Sump:-

1. For stage (2) at 2060

$$
\begin{aligned}
& T=5 \mathrm{~min} \\
& V=Q * T \\
& V=0.905 *(5 * 60)=271.5 \mathrm{~m}^{3}
\end{aligned}
$$

depth $=$ water level in sump - bed level $+\frac{L_{\text {conduit pipe }}}{100}+1$
depth $=22.5-20+\frac{100}{100}+1=4.5 m$
$A=\frac{V}{d} \quad A=\frac{271.5}{4.5}=60.33 \mathrm{~m}^{2}$
$\boldsymbol{A}=\boldsymbol{W} * \boldsymbol{L}$
$L=N * S$ assume $S=2.5 \quad L=8 * 2.5=20 \quad w=60.33 / 20 \quad 3.02 m$

2. For stage (1) at 2040

$$
\begin{aligned}
& V=0.595 *(5 * 60)=187.5 \mathrm{~m}^{3} \\
& A=\frac{V}{d} \quad A=\frac{187.5}{4.5}=39.66 \mathrm{~m}^{2} \\
& L=13.13 \quad w=3.02 \mathrm{~m} \quad d=4.5
\end{aligned}
$$

5.4- Rapid Mixing Tank

Assume :-
Circular section \& Detention time $T=45 \mathrm{sec} \& \quad$ Depth $\mathbf{d}=\mathbf{2 m}$
G value $=700 \mathrm{sec}^{-1}$

$$
V=Q_{d} * T=0.905 * 45=40.725 \mathrm{~m}^{3}
$$

Cross section area $=\frac{V}{d} \quad A=40.725 / 2=20.36 m^{2}$

$$
A=\frac{\pi \varphi^{2}}{4} \quad 20.36=\frac{\pi \varphi^{2}}{4} \quad \varphi=5 m
$$

\therefore Dimension $5 * 2$
5.5-Power $P=G^{2} * V * \mu=(700)^{2} * 40.725 * 1.002 * 10^{-3}=$ 19955. 25 watt $=19.9$ K. watt

5.6- Coagulation:

- Alum Solution Tank
$S=(20-40) m g / L$
$Q_{d}=1.1 Q_{\text {Max Month }}=0.90552 \mathrm{~m}^{3} / \mathrm{s}=78236.9 \mathrm{~m}^{3} / \mathrm{d}$
$Q_{y} * S=78236.9 * 40 * 365 * 10^{-6}=1142.259$ t/year

Vol $=\frac{Q_{d} * S}{C * Y * 10^{6}}=\frac{78236.9 * 40}{1.05 * 0.1 * 10^{6}}=29.804 \mathrm{~m}$
Assume No. of Tanks $=3 \quad$ Vol $\left[\right.$ for $/$ tank] $=\frac{29.8}{3}=9.93 \mathrm{~m}^{3}$
$A=\frac{V o l}{d}=\frac{9.93}{1.5}=6.623 \mathrm{~m}^{3} \quad A=L^{2} \quad L=2.57 m$
Use 3 Tanks with (2.57*2.57*1.5)m

5.7-Sedimentation Tank:

Assume S.l. $R=33 \mathrm{~m} 3 / \mathrm{m}^{2} / d \quad$ circular section
$\emptyset=35 m \quad T=3 h$

- Design:
$A=\frac{Q_{d}}{S \cdot L \cdot R}=\frac{78236.9}{33}=2370.81 \mathrm{~m}^{2}$

$$
\begin{aligned}
& A=N * \frac{\pi \phi^{2}}{4} \quad N=\frac{4 * 2370.81}{\pi *(35)^{2}}=2.4 \quad \text { Taking } N=3 \text { Tanks } \\
& 2370.81=3 * \frac{\pi \emptyset^{2}}{4} \quad \emptyset=31.7 m \simeq 32 \mathrm{~m} \\
& \mathrm{Vol}=Q_{d} * T=78236.9 * \frac{3}{24}=9779.5 \mathrm{~m}^{3}
\end{aligned}
$$

Depth $=\frac{\text { Vol }}{\text { Surface } \text { Area }}=\frac{9779.5}{2370.81}=4 \mathrm{~m}$
Use 3 Tanks ($32 m * 4 m$)

- b-Checks:-
$T=\frac{V o l}{Q}=\left\lceil 3 * \frac{\pi *(32)^{2}}{4} * 4\right\rceil / 78236.9$
$T=0.123$ day $=2.95 \mathrm{hr}[2-3] \mathrm{hr}$ Safe
$V r=\frac{Q}{\pi \varnothing d N}=\frac{78236.9}{\pi * 32 * 4 * 3}=64.88 \mathrm{~m} / d=0.045 \mathrm{~m} / \mathrm{min} \quad V r<0.3 \mathrm{~m} / \mathrm{min}$
Safe
Over flow weir $=\frac{Q}{\pi * \emptyset * N}=\frac{78236.9}{\pi * 32 * 3}=259.54 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}<300 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$ Safe

Use 3 Tanks (32*4) m
Volume of studge hopper:

Assume:-

- Suspend solid concentration $(s)=80 \mathrm{mg} / \mathrm{Lit}$
- Removal ovation ${ }^{\circledR}=90 \%$
- water content $\left(W_{c}\right)=96 \%$
- Specific weight of sludge $\left(\gamma_{s}\right)=1.03 \mathrm{t} / \mathrm{m}^{3}$
- Rate of sludge empting $(m)=3$
$V_{o l}=\frac{Q_{d} * S * R}{m * n *\left(\left(1-w_{c}\right) * \gamma_{s} * 10^{6}\right.}$
- Clari Flocculation Tank:

For sedimentation Zone

Assume

- Detention time $\left(T_{1}\right)=2.5 \mathrm{hr}$.
- Depth $\left(d_{1}\right)=4 m$
- $\varnothing_{1}=30\left[\varnothing_{I} \leq 40\right]$
- For flocculation Zone

Assume

- Detention time $\left(T_{2}\right)=0.5 \mathrm{hr}$.
- Depth $\left(d_{2}\right)=d 1-0.5=3.5 \mathrm{~m}$
a-Design of sedimentation Zone:
$T_{t}=T_{1}+T_{2}=2.5+0.5=3 \mathrm{hr}$

$$
\text { Vol }=Q_{d} * T_{t}=78236.9 * \frac{3}{24}=9779.61 \mathrm{~m}^{3 \sim \sim}
$$

$$
A t=\frac{v o l}{d_{1}}=\frac{78236.9}{4}=2444.90 m^{2}=\frac{N * \phi^{2}}{4}
$$

$N=\frac{4 * 2444.90}{\pi *(30)^{2}}=3.46 \sim 4 \quad$ Take $N=4 \quad 2444.90=\frac{4 * \pi *(\varnothing)^{2}}{4}$
$\varnothing_{1}=27.9 m \approx 28 m$

- Design of flocculation Zone:

$$
\begin{aligned}
& V_{o l}=Q_{d} * T_{2}=78236.9 * \frac{0.5}{24}=1629.93 \mathrm{~m}^{3} \\
& A_{f l c}=\frac{\text { volume }}{d_{2}}=\frac{1629.93}{3.5}=465.69 \mathrm{~m}^{2} \\
& A_{f l c}=N \frac{\pi\left(\phi_{2}\right)^{2}}{4}, N=4 \quad \varnothing_{2}=13 \mathrm{~m}
\end{aligned}
$$

- C-Cheek
S.L. $R=\frac{Q / N}{\frac{\pi}{4}\left(\emptyset_{1}^{2}-\emptyset_{2}^{2}\right)}=\frac{78236.9 / 4}{\frac{\pi}{4} 28^{2}-(13)^{2}}=40.5 \mathrm{~m}^{3} / \mathrm{m}^{2} / d<45 \mathrm{~m}^{3} / \mathrm{m}^{2} / d$ safe
- Design of V-notch weir:weir over flow rate $=\frac{Q}{\pi \varphi}$
$=\frac{78236.9}{4 * \pi * 28}=222.466 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}<300 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$ ok safe the discharge through V-notch weir is given by :- $q=1.46 h^{2.5}$ Assume
- $h=0.05 m$
- $q=1.46 *(0.05)^{2.5}=0.816 * 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}=$ 0.816 lit/sec

Number of required $V-$ notch weir $(N)=\frac{Q}{q}$
$Q=\frac{78236.9}{4}=19559.2 \mathrm{~m}^{3} / \mathrm{d}=0.226 \mathrm{~m}^{3} / \mathrm{sec}=226 \mathrm{lit} / \mathrm{sec}$
$N=\frac{226}{0.816}=276.96=277$ weirs
distance between weirs center lines $=\pi \frac{\varphi}{N}=\pi \frac{28}{277}=$ $0.31 m$

- design of pipes :-

Inlet and outlet pipes \boldsymbol{Q}_{d} of one tank $=\frac{74679}{4}=78236 . \mathrm{m}^{3} / \mathrm{d}=$ $0.226 \mathrm{~m}^{3} / \mathrm{sec}$

Inlet pipe velocity $=1.0 \mathrm{~m} / \mathrm{sec}$
$\boldsymbol{Q}=\boldsymbol{A} * \boldsymbol{v}$
$0.226=A * 1 \quad A=0.226 m^{2}$
$\begin{array}{llr}A=\frac{\pi \varphi^{2}}{4} \quad 0.226=\frac{\pi \varphi^{2}}{4} \quad \varphi=0.536 m & U \operatorname{se\varphi } \varphi \\ v_{\text {act }}=\frac{Q}{A}=\frac{0.226}{\pi \frac{(0.55)^{2}}{4}}=0.95 m / s e c<1.5 m / s e c & o k\end{array}$
Outlet pipe velocity $=0.6 \mathrm{~m} / \mathrm{sec}$
$\boldsymbol{Q}=\boldsymbol{A} * \boldsymbol{v}$
$\mathbf{0 . 2 2 6}=A * 0.6$
$A=0.376 \mathrm{~m}^{2}$
$A=\frac{\pi \varphi^{2}}{4}$
$0.376=\frac{\pi \varphi^{2}}{4}$
$\varphi=0.692 m$
Use $\varphi=700 \mathrm{~mm}$
$v_{\text {act }}=\frac{Q}{A} \quad v_{\text {act }}=\frac{0.226}{\pi \frac{(0.7)^{2}}{4}}=0.587 \mathrm{~m} / \mathrm{sec}<0.7 \mathrm{~m} / \mathrm{sec} \quad$ ok

- Volume of sludge hopper (\forall) :-
$\forall=\frac{Q_{d} * S * R}{m * n *\left(1-W_{c}\right) \gamma_{S} * \mathbf{1 0}^{6}}$
$\forall==\frac{78236.9 * 80 * 0.9}{3 * 4(1-0.96) * 1.03 * 10^{6}}=11.393 \mathrm{m3}=10.87 \mathrm{~m}^{3}$
Assume the time of sludge emptying $=10 \mathrm{~min}$
$Q_{\text {sludge }}=\frac{\forall_{\text {sludge hopper }}}{T}=\frac{11.393}{10 * 60}=0.0189 \mathrm{~m}^{3} / \mathrm{sec}$
Assume the velocity $(v)=1.5 \mathrm{~m} / \mathrm{sec} \quad(1-2) \mathrm{m} / \mathrm{sec}$
$A=\frac{Q}{v} A=\frac{0.018}{1.5}=0.0126 \mathrm{~m}^{2} \quad A=\frac{\pi \varphi^{2}}{4} \quad 0.0126=\frac{\pi \varphi^{2}}{4}$
$\varphi=0.126 \mathrm{~m} \quad u \operatorname{se\varphi } \varphi=150 \mathrm{~mm}$

5.8-Design of rapid sand filter:-

Assume :-

- Rate of filtration $=$ R.O.F $=150 \mathbf{m}^{3} / \mathrm{m}^{2} / \mathrm{d}$
- Surface area of filter $=\mathbf{A}_{\text {filter }}=\mathbf{L} * \mathbf{W} \leq 100 \mathrm{~m}^{2}$
- Thickness of sand layer $=0.65 \mathrm{~m}$
- Thickness of gravel layer $=0.45 \mathrm{~m}$
- Time of back wash $=15 \mathrm{~min}$

Design:-

1-For stage (1) at 2040

$Q_{d}=1.07 * 1.4 * 133989.133 * \frac{250}{1000}=50178.93 \mathrm{~m}^{3} / d$
$A_{\text {filters }} \frac{Q_{d}}{\text { R.O.F }}=\frac{50178.93}{150}=334.52 \mathrm{~m}^{2} \quad$ Use filter 6* 6 m
Number of filters $(\mathbf{N})=\frac{A_{\text {filters }}}{A_{\text {filter }}}$
$\mathrm{N}=\frac{334.52}{8 * 6.5}=8$ filters
\therefore use 8 filters +2 for back wash

Pipe	Velocity $(\mathrm{m} / \mathrm{s})$
Inlet	$0.3-0.8$
Outlet	$1-2$
Wash water supply	$1.5-3$
Wash water drain	$0.9-2$
Preparing filter to waste	$1.6-3.2$
Air supply	$15-20$

- For one filter:
$Q=\frac{Q_{d}}{N}=\frac{50178.93}{10}=5017.893 \mathrm{~m}^{3} / \mathrm{d}=0.058 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\text {backwasher }}=A^{*}$ rate of backwash $h_{1}=\left(6^{*} 6^{*}\right) * 450=16200$
$m^{3} / s=0.19 m^{3} / s$
Q air $=A *$ rate of air $=(6 * 6) *(1 * 6)=216 \mathrm{~m}^{3} / \mathrm{d}=0.003 \mathrm{~m}^{3} / \mathrm{s}$

Design of pipes:

1. Inlet Pipe
$V=0.8 \mathrm{~m} / \mathrm{s} \quad Q=A * v \quad A=\frac{0.058}{0.8}=0.0725 \mathrm{~m}^{2}$
$A=\frac{\pi \varnothing^{2}}{4} \quad \varnothing=\sqrt{\frac{4 * 0.0725}{\pi}} \quad \varnothing$
2. Outlet pipe:
$V=2 \mathrm{~m} / \mathrm{s} \quad A=\frac{0.058}{2}=0.029 \mathrm{~m}^{2}$
$\varnothing=\sqrt{\frac{4 * 0.029}{\pi}}=0.192 \mathrm{~m} \quad$ Use $\varnothing=200 \mathrm{~m} \mathrm{~m}$
3. wash supply pipe:
$V=2 \mathrm{~m} / \mathrm{s} \quad A=\frac{0.19}{2}=0.95 \mathrm{~m}^{2}$
$\varnothing=\sqrt{\frac{4 * 0.95}{\pi}} \quad \varnothing=0.35 \quad$ Use $\emptyset 400 \mathrm{~mm}$

2-For stage (2) at 2060

$Q_{d}=1.07 * 1.4 * 188370.6 * \frac{270}{1000}=76188.372 \mathrm{~m}^{3} / \mathrm{d}$
$A_{\text {filters }} \frac{Q_{d}}{\text { R.O.F }}=\frac{76188.372}{150}=507.922 \mathrm{~m}^{2} \quad$ Use filter $6 * 6 \mathrm{~m}$
Number of filters (N) $=\frac{A_{\text {filters }}}{A_{\text {filter }}}$

$$
\mathrm{N}=\frac{507.922}{8 * 6.5}=10 \text { filters }
$$

\therefore use 10 filters +2 for back wash

5.9-Ground Tans

$$
\begin{aligned}
& C_{1}=Q_{\text {_(max.monthly) }} * 0.5 \mathrm{hr} \\
& Q \text { Max }=0.8232 * 24 * 60 * 60=71884.8 \mathrm{~m}^{3} / \text { day } \\
& C_{I}=71884.8 * 0.5 / 24=1497.6 \mathrm{~m}^{3} \\
& C_{2}=0.4^{*} \text { Q_avg*day } \\
& { }_{c_{2}}=0.4 * 50860.062 * 1=20344.02 \mathrm{~m}^{3} \\
& C_{3}=\text { Q_(m ax.monthly)*8 hr } \\
& C_{3}=71884.8 * 8 / 24=23961.6 \mathrm{~m}^{3} \\
& C_{\text {fire }}=(120 * P) / 10000 \\
& C_{\text {fire }}=(120 * 188370.6) / 10000=2260.4472 \mathrm{~m}^{3} \\
& \text { V=max.of c_1 or c_2 or c_3+4/5 c_fire } \\
& \forall=23961.6+4 / 5 * 2260.4472=25769.95 \mathrm{~m}^{3} \\
& \forall=N^{*} L^{*} W^{*} d \\
& \text { Assume:- } \\
& L=50 \mathrm{~m} \quad \& \quad W=50 \mathrm{~m} \quad \text { \& } \quad d=6 \mathrm{~m} \\
& 25769.95=N * 50 * 50 * 6 \\
& N=1.7 \\
& \text { Use } N=2 \text { tanks } \\
& 25769.95=2 * 50 * W * 6 \quad W=42.9 \simeq 43 \mathrm{~m} \\
& \text { Use } 2 \text { tanks with } L=50 m \quad \& \quad W=43 m \quad \& \quad d=6 m
\end{aligned}
$$

	Stage (1)	Stage (2)
conduit pipe Losses	$\begin{gathered} 2 \varnothing 700 \\ .195 \mathrm{~m} \end{gathered}$	$\begin{aligned} & 3 \varnothing 700 \\ & 0.212 \mathrm{~m} \end{aligned}$
Screen Lossess	$\begin{gathered} \mathrm{N} \text { screens }=24 \\ \emptyset=0.9 \mathrm{~m} \quad \mathrm{~N} \text { bars }=23 \\ \mathrm{~B}=1.5 \emptyset=1.05 \mathrm{~m} \\ 0 . .02 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{N} \text { screens }=24 \\ \emptyset=0.9 \mathrm{~m} \quad \mathrm{~N} \text { bars }=23 \\ \mathrm{~B}=1.5 \emptyset=1.05 \mathrm{~m} \\ 0.02 \mathrm{~m} \end{gathered}$
Sump	$(12 * 4 * 4.5) \mathrm{m}$	$(15 * 4 * 4.5) \mathrm{m}$
low Lift pump	2 pump +1 stand by	5 pumps +3 stand by
Force Main Lossess	$\begin{gathered} \mathrm{Q}=0.595 \\ \mathrm{~d}=1 \mathrm{~m} \\ \mathrm{~h}_{\mathrm{f}}=0.096 \mathrm{~m} \\ \mathrm{~h}_{\min }=0.091 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{Q}=0.905 \\ \mathrm{~d}=1 \mathrm{~m} \\ \mathrm{~h}_{\mathrm{f}}=0.209 \mathrm{~m} \\ \mathrm{~h}_{\min }=0.041 \mathrm{~m} \end{gathered}$
Rapid mixing tank	$\begin{gathered} \varnothing=5 \mathrm{~m} \\ \mathrm{~d}=2 \mathrm{~m} \\ \mathrm{~N}=1 \operatorname{tanks} \end{gathered}$	$\begin{gathered} \varnothing=5 \mathrm{~m} \\ \mathrm{~d}=2 \mathrm{~m} \\ \mathrm{~N}=1 \operatorname{tanks} \end{gathered}$
clari $=$ flocculation	$\begin{aligned} \varnothing_{\text {sed }} & =32 \mathrm{~m} \\ \varnothing_{\text {Floc }} & =13 \mathrm{~m} \\ \mathrm{~d}_{\text {sed }} & =4 \mathrm{~m} \\ \mathrm{~d}_{\text {floc }} & =3.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} \varnothing_{\text {sed }} & =32 \mathrm{~m} \\ \varnothing_{\text {Floc }} & =13 \mathrm{~m} \\ \mathrm{~d}_{\text {sed }} & =4 \mathrm{~m} \\ \mathrm{~d}_{\text {floc }} & =3.5 \mathrm{~m} \end{aligned}$
Filtration	$\begin{gathered} 8 \text { Filters }+2 \text { back wash } \\ =10 \text { filters } \end{gathered}$	10 Filters +2 back wash $=12$ filters
Ground Tank	$\begin{gathered} 2 \operatorname{tank}(\mathrm{~L}=50, \mathrm{~W}=43, \\ \mathrm{d}=5) \mathrm{m} \end{gathered}$	$\begin{gathered} 3 \operatorname{tank}(\mathrm{~L}=50, \mathrm{~W}=43, \\ \mathrm{d}=5) \mathrm{m} \end{gathered}$

5.10-Elevated tank

	Time	Consumption lit/capita/2hrs	Accumulative
1	$12 \mathrm{MN}-2 \mathrm{Am}$	1	1
2	$2-4$	1.7	2.7
3	$4-6$	3.5	6.2
4	$6-8$	6.6	12.8
5	$8-10$	15.1	27.9
6	$10-12 \mathrm{~N}$	16.2	44.1
7	$10 \mathrm{~N}-2 \mathrm{PM}$	17	61.1
8	$2-4$	13.2	74.3
9	$4-6$	12.2	86.5
10	$6-8$	7.4	93.9
11	$8-10$	3.6	97.5
12	$10-12 \mathrm{Mn}$	2.5	100

Capacity $=\frac{(A+B) P}{1000}+\frac{1}{5}$ Cfire

$$
C=\frac{(18+15) P}{1000}+\frac{120 * P}{5 * 10000}
$$

1-For stage (2) at 2060

$$
C=\frac{(18+15) 188370.6}{1000}+\frac{120 * 188370.6}{5 * 10000}=6668.319 \mathrm{~m}^{3}
$$

Assume NO. of tanks $=6$ tanks.

$$
\text { Vone }=\frac{6668.319}{6}=1111.3865 \mathrm{~m}^{3} \quad \text { Assume } d=8 \mathrm{~m} \quad A=138.9 \mathrm{~m}^{2}
$$

$$
A=\frac{\pi \varphi^{2}}{4} \quad \rightarrow \quad \varphi=1330 \mathrm{~mm}
$$

2-For stage (1) at 2040

$$
C=\frac{(18+15) 133989.133}{1000}+\frac{120 * 133989.133}{5 * 10000}=4743.21 \mathrm{~m}^{3}
$$

Assume NO. of tanks $=4743.21 / 1111.3865=4.26 \quad$ using 5

5.11-Design of network

- transmission mains
$Q_{d}=Q_{\text {max.daily }}+Q_{\text {fire }}$

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{av}}=588 \mathrm{~L} / \mathrm{s} \quad \& Q \text { max.daily }=1.8 * 588=1059.58 \mathrm{~L} / \mathrm{s} \\
=1059.58+50=1109.58 \mathrm{l} / \mathrm{S}
\end{gathered}
$$

- Main and secondary pipes
$Q_{d}=$ the biggest of $\left(Q_{\text {max.hourly }} \& Q_{\text {max.daily }}+Q_{\text {fire }}\right)$
$Q_{\text {max.hourly }}=2.5 * 588=1470 \mathrm{l} / \mathrm{S}$
$Q_{\text {max.daily }}+Q_{\text {fire }}=1109.58 \mathrm{l} / \mathrm{S}$
$Q_{d}=14701 / S$

- Minor distributions

$Q_{d}=$ Fire flow $=50 \mathrm{l} / \mathrm{S}$

- Service connection.
peak hourly flow $=1470 \mathrm{l} / \mathrm{S}$
- Design consideration for distribution system

1- Minimum size in pipe network 150 mm for the secondary
2- pipes 200 mm for the main pipes

- Hydraulic gradient $(\mathbf{S})=\mathbf{1 - 3} \%$ for main pipes.
- The Velocity (v) = 0.8-1.5 MMS
- The Pressure (p) in my point $\mathbf{P}=(\mathbf{2 5 m})$ for residential areas (30-40) high value of industrial and commercial area
- Hazen William Equation
$Q=\left(0.278 C D 2.63 \mathrm{~S}^{0.54}\right.$
$C=\mathbf{1 2 0}$ From table

Section (1):

$Q d=1109.58 \mathrm{l} / \mathrm{s} \quad$ Use pipe $1 Ø 1000$

Section (2) :

Qd $=1470 \mathrm{~d} / \mathrm{sec} \quad$ Use pipe $4 Ø 700$
At $\mathrm{S}=0.002 \rightarrow 4 * 455=1820 \quad$ Popullation $=188370.6 \mathrm{c}$

Section (3):

$Q d=0.7 * 1470 \mathrm{l} / \mathrm{S}=1029 \mathrm{l} / \mathrm{S}$
Use pipes 6 Ø $500=1128$ I/S \quad Population $=131859 \mathrm{C}$

Section (4) :

$\mathrm{Qd}=0.3 * 1470=441 \mathrm{l} / \mathrm{S}$
Use pipes $4 \emptyset 400+1 \varnothing 300=495$ l/S Population $=56511.18 \mathrm{C}$
Section (5) :
$Q d=0.05 * 1470=73.5 \mathrm{l} / \mathrm{S}$
Use pipes 4 Ø $200+1$ Ø $300=117 \mathrm{l} / \mathrm{S} \quad$ Popullation $=9418.53 \mathrm{C}$

Qmax
daily + Q fire l/sec

> Qmax hourly l/sec

Qdes Q pipe l/sec

1	188370.6	100%	50	1109.58	-	1109.58	1163.5	safe
2	188370.6	100%	50	1109.58	1470	1470	1820	safe
3	131859	70%	50	776.706	1029	1029	1128	safe
4	56511.18	30%	40	332.874	441	441	495	safe
5	9418.53	5%	25	55.47	73.5	73.5	117	safe

sec	Demand discharge	Cut pipes numbers	NO of pipes	Diameter of pipes	length
2	1470	4	1	700	393
			1	700	218
			1	700	381
			1	700	212
3	1029	5	1	500	466
			1	500	462
			1	500	265
			1	500	158
			1	500	225
4	441	5	1	400	457
			1	400	436
			1	400	359
			1	400	286
			1	300	142
5	73.5	5	1	200	645
			1	200	645
			1	200	284
			1	200	326
			1	300	366

5.12- Wast Water Treatment

Stage(2)

- In summer :

Qav=0.8*588=470.4 lit/sec ، $\mathrm{p}=188370.6$ capita

$$
\mathrm{Q}=\left(1+\frac{14}{4+\sqrt{188.370}}\right) * 470.4=948.10 \mathrm{~m}^{3} / \mathrm{s}
$$

Qinf $=0.2 *$ Qav waste $=0.2 * 470=94 \mathrm{lit} / \mathrm{sec}$
$Q \max =1.8^{*} 470.4+94=940.72 \mathrm{lit} / \mathrm{sec}=0.940 \mathrm{~m} 3 / \mathrm{sec}$

- In winter :
M.F $=0.2 p^{0.167}=0.2 *(188.3706)^{0.167}=0.48$

Qmin $=0.8 * 0.48 * 470.4+94=274.74$ lit/sec
Stage (1) :

- In summer :

Qav $=0.8$ * 387=309lit/sec ، $\mathrm{P}=133989.133$ capita
P.F $=\frac{18+\sqrt{133.989}}{4+\sqrt{133.989}}=\mathbf{1 . 8 9}$

Qinf $=0.2 * 309=61.8$ lit/sec
Qmax $=1.89 * 309+61.8=645.8 \mathrm{lit} / \mathrm{sec}$

- In winter :
M.F $=0.2 *(133.989)^{0.167}=0.45$

Qmin $=0.8$ * 0.45 * $309+61.8=173.82 \mathrm{lit} / \mathrm{sec}$
$\mathrm{Lt}=15468 \mathrm{~m} \quad \frac{Q \max }{L t}=\frac{940}{15468}=0.07$

$\begin{aligned} & \hline \varnothing \\ & \mathrm{Mm} \end{aligned}$	Slope \%	Vfill m / s	$\begin{aligned} & \mathrm{QN} \\ & \mathrm{~L} / \mathrm{S} \end{aligned}$	$\frac{d_{\max }}{\emptyset}$	$\frac{\overline{Q_{\max }}}{Q_{\text {fill }}}$	Qmax* ${ }^{*} / 1 / \mathrm{sec}$) For each pipt	L survice (m)
200	5	0.71	22			20	285
250	4	0.74	36			32	455
300	3.33	0.67	54			49	700
350	2.8	0.68	75			68	970
400	2.5	0.80	100	0.75	0.90	90	1285
450	2	0.77	122			110	1570
500	1.8	0.79	155			140	2000

600	1.4	0.97	223			200	2855
700	1.3	0.84	323			291	4150
800	1.0	0.81	407			431	6155
900	0.8	0.78	496	0.90	.06	526	7510
1000	0.8	0.84	660			700	10000

8- Conclusion

Recognizing the importance of enhancing sanitation practices is more effective than simply introducing technological advancements. This approach is considered advantageous for the community as it emphasizes collaboration between suppliers and beneficiaries through dialogue and information sharing. Ultimately, individual users have the ultimate authority in deciding whether to adopt or reject new technologies. The success of the project lies in the hands of these users, as the value of the investment relies not only on community support but also on the acceptance of families and individuals. It is crucial to convince individuals about the benefits of improved hygiene and the advantages that come with adopting new technologies, outweighing any associated risks. Providers must also take into account the social context and limitations that influence personal decisions. By understanding the community's perspectives, providers can identify positive attributes that may elicit negative responses and utilize the community's values, beliefs, and practices to drive positive change.

9-REFERENCES

1. Sanitary Engineering. Prof. Dr. Kamal Radwan.
2. Reynolds, T.D. and Richards, P.A. 'Unit operations and Processes in Environmental Engineering', Second Edition, PWS Publishing Company, 1996.
3. Gray, N.F., "Water Technology", Arnold Publishers, 1999.
4. Clark, J.W., Niessman, W. and Hammer, M.J. "Water Supply and pollution control'", Third Edition, Harper \& Row publishers, 1977.
5. Laws of The Minister of Health and Population No. 458 of 2007 regarding the standards and specifications for potable water.
6. Laws of The Minister of Irrigation and Water Resources: Law No. 48 of 1982 regarding the protection of the Nile River and waterways.

STANDARDS

1. The Egyptian Code for Drinking Water and Sewage Networks, 2010.
2. The Egyptian Code for Sewage Treatment Plants.
3. The Egyptian Code for Water Treatment Plants.
