

Nile Higher Institute For Engineering and Technology

Sanitary Engineering Project

Group 1

Prepared By

•	Eslam Badr Mohamed HassanTomraz	180237
•	Abdelazez Sabry Mohamed Elmakhzangy	170367
•	Ahmed Hassan El sayed khashan	180167
•	Mahmoud Ahmed Ramadan Abdel Nasser	180135
•	Mohamed Morsi Khalifa Shaaban	180177
•	Menna Alla Ebrahim Mohamed Mostafa	180233
•	Adham mansour ebrahim mohamed	180066
•	Ahmed Adell Abdelmeged Abdallah	180203

Supervisor

Proffessor . Dr .Kamal Radwan

Professor at Civil Department, Nile Higher Institute for

Engineering and Technology

Eng. Karim Taha

Teaching assistant at Civil Department , Nile Higher Institute for

Engineering and Technology

Contents

ABSTRACT	3
	4
1.1 THE PROBLEM	4
	4
1.3 EXISTING SOLUTIONS	4
1.4 DESIGN CONSTRAINTS	4
2 CUSTOMER NEEDS	5
3 GENERATED CONCEPTS	5
4 FINAL CONCEPT	5
5 Population and Water Consumption	6
5.1 Forecasting Population	6
5.2 DESIGN FLOW	7
5.3 SHORE INTAKE	8
5.4 RAPID MIXING TANK	12
5.5 POWER TANK	12
5.6 COAGULATION	12
5.7 SEDIMINTATION TANK	13
5.8 DESIGN OF RAPID SAND FILTER	16
5.9 Ground Tank	18
5.10 elevetaed Tank	20
5.11 DISTRIBUTION NETWORKS	21
5.12 WASTE WATER	24
6 CONCLUSION	26
7 REFERENCES	27

Abstract

This research project focuses on the examination of aquatic vegetation, the quality of water, its treatment, as well as the supply and distribution of water. Additionally, we analyze population estimates and water quantities. Furthermore, our investigation extends to the field of sewage treatment facilities, encompassing aspects such as sewage volume, wastewater treatment, collection, sanitation, the potential for wastewater reuse, and the volume of wastewater following the treatment process.

1- PROJECT DEFINITION

This project involves the construction of a water treatment plant and the design of both the water distribution network and the sewage network.

1.1 THE PROBLEM

The challenge at hand is to create a water treatment plant capable of supplying water to a city in both 2040 and 2060. This entails determining the appropriate number and sizes of pipes for the water distribution network to ensure efficient delivery to households, as well as identifying the optimal number and diameters of pipes for the sewage network.

1.2 STUDY OBJECTIVES

The primary objectives of this study are as follows:

- Designing a water treatment plant
- Planning the water distribution network
- Establishing the wastewater network design

1.3 EXISTING SOLUTIONS

For the water treatment plant, the existing solutions involve the use of pumping mechanisms, filters, and tanks to treat the water and produce clean, potable water suitable for human consumption. Regarding the distribution network, pipes, pumps, and elevated tanks are utilized to transport water to residential areas. In the case of the wastewater network, the design revolves around determining pipe slopes, utilizing gravity, and selecting appropriate diameters to convey the wastewater to the sewage plant.

1.4 DESIGN CONSTRAINTS

There are no specific design constraints or limitations identified for this project

2- CUSTOMER NEEDS and BACKGROUND

The customer's needs revolve around water treatment, extraction of drinking water, ensuring water delivery to the highest level in the distribution network, maintaining suitable water pressure during peak consumption hours, and efficient collection of wastewater from households for transport to sewage stations. These requirements should be met while ensuring economic viability and maintaining water quality.

3 -GENERATED IDEAS Water treatment plant:

The water treatment process involves treating water obtained from the source and disinfecting it by adding chlorine (CL2). Water distribution network: The design of the distribution network includes determining the appropriate pipe diameters to withstand pressure and ensure water reaches all areas of the city, even the farthest points. Wastewater network: The wastewater network is responsible for transporting wastewater from the city to the wastewater treatment plant.

4 -FINAL DESIGN

Water treatment plant: The final concept includes the utilization of pumps, filters, and tanks to treat water and produce purified water suitable for human consumption. Water distribution network: The distribution network involves the use of pipes, pumps, and overhead tanks to deliver water to residential areas. Sewage pipe network: The design of the sewage pipe network considers factors such as pipe slope and gravity, along with the selection of suitable pipe diameters for transporting wastewater to the treatment plant.

5-Population and Water Consumption

P₁₉₉₆=60200 capita P₂₀₀₆=72000 capita P₂₀₁₆=87400 capita

5.1- Forecasting Population

<u>Arithmetic Method:</u>

Year 🖵	Population (P)	ΔP	ΔΤ 🖵	Κα=ΔΡ/ΔΤ 🖵
1996	60200			
2006	72000	11800	10	1180
2016	87400	15400	10	1540
				∑Ka =2720

 $Ka (average) = \sum Ka / N = 2720/2 = 1360$

 $P_{n} = P_{a} + K_{a} * \Delta t$ $P_{2040} = P_{2016} + 1360 * \Delta t$

=87400+1360*(2040-2016) =120040 capita

 $P_{2060} = P_{2016} + 1360 * \Delta t$

=87400+1360*(2060-2016) = 147240 capita

Geometric method:

Year	opulation 🗧	Inp 🖵	ΔlnP	ΔΤ 🚽	Kg=∆lnP/ <i>L</i> ∓
1996	60200	11.005			
2006	72000	11.184	0.17899377	10	0.0179
2016	87400	11.378	0.193829164	10	0.0194
					∑Kg =04

 $Kg (average) = \sum Kg / N = .04/2 = .02$ $ln(P_n) = ln(P_o) + Kg^* \Delta t$ $ln P_{2040} = ln P_{2016} + Kg^* \Delta t$ $ln P_{2040} = 11.379 + 0.02*24 = 11.859$ $P_{2040} = 141350 \ capita$ $ln P_{2060} = ln P_{2016} + Kg* \Delta t$ $ln P_{2060} = 11.37 + .02*44 = 12.25$ $P_{2060} = 208981.288 \ capita$

Annual growth rate method

Year 🗸	Population (P)	Pn/P。 🖵	ΔΤ 🗸	m=(Pn/P₀)1/ ΔT–	m-1 🗸
1996	60200				-1
2006	72000	1.196	10	1.0180	0.018
2016	87400	1.214	10	1.0195	0.0195
					∑Km=.04

 $Km (average) = \sum Km / N = .04/2 = .02$ $P_n = P_o * (1 + m - 1)^{\Delta t}$ $P_{2040} = P_{2016} * (1 + m - 1)^{\Delta t}$ $P_{2040} = 87400(1 + 0.02)^{24} = 140577.4 \text{ capita}$ $P_{2060} = P_{2016} * (1 + m - 1)^{\Delta t}$ $P_{2060} = 87400(1 + 0.02)^{44} = 208890.6 \text{ capita}$

Year	Arithmetic Method	Geometric method	Annual growth rate method	P average	
2040	120040	141350	140577.4	133989.133	
2060	147240	208981.2	208890.6	188370.6	

5.2- Design Flow:-

 $\frac{For stage (1)(at 2040)}{q_{2040} = 250 L/c/d}$ $Q_{2040 avg} = P_{avg2040} * q_{2040}$ $Q_{2040 avg} = 133989.133 * \frac{250}{1000} = 33497.28 m^3/d\& 0.387m^3/s$

$\frac{For stage (2) (at 2060):-}{q_{2060} = 270L/c/d}$ $Q_{2060 avg} = P_{avg2060} * q_{2060}$ $Q_{2060 avg} = 188370.6 * \frac{270}{1000} = 50860.062 m^3/d \& 0.588m^3/s$

Flow	2040	2060
Q av	$0.387m^{3}/s$	$0.588m^3/s$
Q _{Max} Monthly =1.4* Q _{av}	0.5418m ³ /s	$0.8232 \ m^3/s$
Q_{max} daily	0.6966 m ³ /s	$1.0584 \ m^{3}/s$
$=1.8* Q_{av}$		
Q_{max} hourly=	0.9675 m ³ /s	$1.47 \ m^3/s$
$=2.5*Q_{av}$		
Q Design	0.59598 m ³ /s	$0.90552 \ m^3/s$
$=1.1*1.4*Q_{av}$		

5.3- Shore Intake

• For stage (2) at 2060:-

$$Q_d = .905 \text{ m}^3/\text{sec}$$

Design of Conduit Pipes :-
 $Q_d = A * v$
Assume $v = 1.0 \text{ m/sec}$ & $A = .905 \text{ m}^2$
 $A = N \frac{\pi \varphi^2}{4}$ & Assume $N = 3$
.905 = $3 * \frac{\pi \varphi^2}{4}$ $\varphi = .61m \rightarrow \varphi = 700 \text{ mm}$
 $v_act = Q/A = \frac{0.905}{1.15} = .78 \text{ m/s}$

• Check for first stage 2040:- $Q_d = .59 \ m^3/sec$ N=2

8

$v = \frac{Q_d}{N*\frac{\pi\varphi^2}{4}} = \frac{.595}{2*\frac{\pi*(0.7)^2}{4}} = <(0.76 \sim 1.5)m/sec$
Stage (1): 2ϕ 700
Stage (1): 2ϕ 700 Stage (2):3 ϕ 700
• <u>Head Losses Through The Pipe:-</u> 1 Foundance (2) at 2060
<u>1-For stage (2) at 2060</u>
Assume:- $I = 100 m$ ρ $f = 0.4$
L = 100m & $f = .04$
<u>Friction losses:-</u> $flm^2 = 0.04 \times 100 \times 78^2$
$hf = \frac{flv^2}{2a\phi} = \frac{.04 \times 100 \times .78^2}{2 \times 9.81 * .7} = 17.7 \ cm$
hmin = .2 * hf = .2 * 17.7 = 3.5 cm
$Total \ losses = h_f + h_{min}$
$Total \ losses = 17.7 + 3.5 = 21.2cm$
Water level in sump = water level in canal – total losses
<i>Water level in sump</i> = $15212 = 14.7 m$
2-For stage (1) at 2040
Friction losses:-
$hf = \frac{flv^2}{2g\phi} = \frac{.04 \times 100 \times .766^2}{2 \times 9.81 * .7} = 16.3 \ cm$
hmin = .2 * hf = .2 * 16.7 = 3.2 cm
$Total \ losses = h_f + h_{min}$
$Total \ losses = 16.3 + 3.2 = 19.5 cm$
• <u>Design of screen:-</u>
Assume:
$B = 1.5 \varphi$ $S = 3cm = 0.03m$ $a = 1.5 cm$
B = N * S + a(N-1)
$1.5^{*}.7 = 3N + 1.5N - 1.5$ $N = 23.6 \simeq 24$ no.of bars 24-1=23
Losses of screen

Losses of screen

$$h_{screen} = \frac{1.4(v_{th}^{2} - v_{app}^{2})}{2g}$$

$$v_{th} = \frac{Q_{d}}{n(d \times s \times N)/sin(\theta)}$$
• $d = H.W.L$ - Bed Level 23.5-20=3.5
• $s = 3cm$
• $\theta = 60$
• $n = 3$
• $N = 24$ $v_{th} = \frac{.905}{3(3.5 \times .03 \times 24)/sin(60)} = .103m/s$
 $v_{app} = \frac{Q_{d}}{n \times l \times d} = \frac{.905}{3 \times 10.5 \times 3.5} = .082m/s$
 $h_{screen} = \frac{1.4(.103^{2} - .082^{2})}{2 \times 9.81} = 2.7 \times 10^{-4} = .002$
 $< 30 \ Ok$

• Design of Force main:-
Assume v=1.5 m/s
I-For stage (2) at 2060

$$Q_d = A*V \quad \&.905 = 1.5*A$$

 $A = .603m^2 = \frac{\pi \phi^2}{4} \quad \& \phi = .87 \simeq 900mm \quad A_{acc} = .63m^2$
 $v_{ac} = .905/.63 = 1.4 m/s \quad OK$
Head loss (hl)
 $s = (\frac{Q_d}{278 \times c \times D^{2.63}})^{\frac{1}{54}} = (\frac{.905}{.278 \times 120 \times 9^{2.63}})^{\frac{1}{54}} = 2.09*10^{-3}$
 $h_f = S*L = 2.09*10^{-3}*100 = .209 m$
 $h_m = .2 h_f = .041 m \quad \& hL = .209 + .041 = .25 m$
2-For stage (1) at 2040
 $A_{acc} = .63m^2 \quad v_{ac} = .595/.63 = .944 m/s \quad OK$
 $s = (\frac{Q_d}{.278 \times c \times D^{2.63}})^{\frac{1}{54}} = (\frac{.595}{.278 \times 120 \times 9^{2.63}})^{\frac{1}{54}} = 9.6*10^{-4}$
 $h_f = S*L = 9.6*10^{-4}*100 = .096 m$
10

$$h_{m} = .2 \ h_{f} = .0912 \ m \ \& \ hL = .0912 + .096 = .1152 \ m$$
• Design of low lift Pumps

I-For stage (2) at 2060
• $Q_{d} = .905 \ m^{3}/s \ \& \ 905 lit/s$
• Assume $Q_{pump} = 300 \ lit/s$
no of pump = $\frac{Q_{d}}{Q_{pump}} = \frac{905}{300} = 3.016$ using $N = 5$
 $n_{working} = 5 \ working + 3 \ stand \ by$
 $Q_{pump} = \frac{905}{5} = 181 \ L/s$
• Head of Pump HL = $h_{static} + h_{dynamic}$
H static
= berm level - water level in sump
+ (6 - 8)m

24.5-22.5+6 = 8 m $h_{dynamic} = 0.25 \ m$
HL = $8 + .25 = 8.25 \ m$
HL = $8 + .25 = 8.25 \ m$
HL = $8 + .25 = 8.25 \ m$
HL = $8 + .25 = 8.25 \ m$
HT = $8 - .25 + 0.02 + .212 = 8.48 \ m$
H.P = $\frac{y \cdot Q_d * H_t}{75\eta_1 \eta_2} = H.P = \frac{1 \times 181 \times 8.48}{75 \times .63} = 32.48 \ HP$

2-For stage (1) at 2040
• $Q_d = .595 \ m^3/s \ \& \ 595/s$
• Assume $Q_{pump} = \frac{300 \ lit/s}{300} = 1.98 \ using \ N = 2$
 $n_{working} = 2 \ working + 2 \ stand \ by$
• Design of Sump:-

I.For stage (2) at 2060

T = 5 minV = Q * T

 $V = 0.905 * (5 * 60) = 271.5 m^3$

$$depth = water \ level \ in \ sump - bed \ level + \frac{L_{conduit \ pipe}}{100} + 1$$
$$depth = 22.5 - 20 + \frac{100}{100} + 1 = 4.5 \ m$$
$$A = \frac{v}{d} \qquad A = \frac{271.5}{4.5} = 60.33 \ m^{2}$$
$$A = W * L$$
$$L = N * S \quad assume \ S = 2.5 \quad L = 8 * 2.5 = 20 \quad w = 60.33/20 \ 3.02m$$

2.For stage (1) at 2040

$$V = 0.595 * (5 * 60) = 187.5 m^{3}$$
$$A = \frac{V}{d} \qquad A = \frac{187.5}{4.5} = 39.66 m^{2}$$
$$L = 13.13 \qquad w = 3.02m \qquad d = 4.5$$

5.4- Rapid Mixing Tank

Assume :-

Circular section & Detention time T = 45sec & Depth d = 2mG value = 700 sec⁻¹

 $V = Q_d * T = 0.905 * 45 = 40.725 \text{ m}^3$ Cross section area $= \frac{V}{d}$ A = 40.725/2 = 20.36m² $A = \frac{\pi \varphi^2}{4}$ 20.36 $= \frac{\pi \varphi^2}{4}$ $\varphi = 5m$ \therefore Dimension 5 * 2

5.5-Power $P = G^2 * V * \mu = (700)^2 * 40.725 * 1.002 * 10^{-3} = 19955.25 watt = 19.9 K. watt$

5.6- Coagulation:

• Alum Solution Tank S = (20-40) mg/L $Q_d = 1.1 Q_{Max Month} = 0.90552 m^3/s = 78236.9 m^3/d$ $Q_y * S = 78236.9 * 40 * 365 * 10^{-6} = 1142.259 t/year$

 $Vol = \frac{Q_d * S}{C_* V_* 10^6} = \frac{78236.9 * 40}{1.05 * 0.1 * 10^6} = 29.804 m$ Assume No. of Tanks = 3 Vol [for / tank] = $\frac{29.8}{3}$ = 9.93m³ $A = \frac{Vol}{d} = \frac{9.93}{1.5} = 6.623 m^3 A = L^2 L = 2.57m$ Use 3 Tanks with (2.57*2.57*1.5)m 5.7-Sedimentation Tank: Assume S.I.R = $33m3/m^2/d$ circular section $\emptyset = 35m$ T = 3h• Design: $A = \frac{Q_d}{S \cdot L \cdot R} = \frac{78236.9}{33} = 2370.81 \, m^2$ $A = N * \frac{\pi \phi^2}{4} \qquad N = \frac{4 * 2370.81}{\pi * (35)^2} = 2.4 \quad Taking \ N = 3 \ Tanks$ $2370.81=3*\frac{\pi\phi^2}{4}$ $\phi=31.7m\simeq 32$ m $Vol = Q_d * T = 78236.9 * \frac{3}{24} = 9779.5 m^3$ $Depth = \frac{Vol}{Surface Area} = \frac{9779.5}{2370.81} = 4m$ **Use 3 Tanks (32m * 4 m)** • b-Checks:- $T = \frac{Vol}{o} = \left[3 * \frac{\pi * (32)^2}{4} * 4\right] / 78236.9$ T = 0.123 day = 2.95 hr [2-3]hr Safe $Vr = \frac{Q}{\pi^{0} \text{ dN}} = \frac{78236.9}{\pi * 32 * 4 * 3} = 64.88 \text{ m/d} = 0.045 \text{m/min} \text{ Vr} < 0.3 \text{ m/min}$ Safe Over flow weir = $\frac{Q}{\pi * 0 * N} = \frac{78236.9}{\pi * 32 * 3} = 259.54 \text{ m}^3 / \text{m}^2 / d < 300 \text{ m}^3 / \text{m}^2 / d$ Safe Use 3 Tanks (32 * 4) m

Volume of studge hopper: Assume:-

- Suspend solid concentration (s) = 80 mg/Lit
- *Removal ovation* ® = 90 %
- water content $(W_c) = 96\%$

• Specific weight of sludge $(\gamma_s) = 1.03 t/m^3$ • Rate of sludge empting (m) = 3 $V_{ol} = \frac{Q_d * S * R}{m * n * ((1 - w_c) * \gamma_s * 10^6)}$ • Clari Flocculation Tank: For sedimentation Zone Assume • Detention time $(T_1) = 2.5$ hr. • *Depth* $(d_1) = 4m$ • $\mathcal{Q}_1 = 30 \ [\ \mathcal{Q}_1 \le 40 \]$ • For flocculation Zone Assume • Detention time $(T_2) = 0.5$ hr. • Depth $(d_2) = d1 - 0.5 = 3.5 m$ a-Design of sedimentation Zone: $T_t = T_1 + T_2 = 2.5 + 0.5 = 3hr$ $Vol = Q_d * T_t = 78236.9 * \frac{3}{24} = 9779.61 m^{3 \sim 2}$ $At = \frac{vol}{d_1} = \frac{78236.9}{4} = 2444.90m^2 = \frac{N*\phi^2}{4}$ $N = \frac{4 \times 2444.90}{\pi \times (30)^2} = 3.46 \sim 4 \quad Take \ N = 4 \qquad 2444.90 = \frac{4 \times \pi \times (\emptyset)^2}{4}$ $\mathcal{O}_1 = 27.9 \text{ m} \approx 28 \text{ m}$

• Design of flocculation Zone: $V_{ol} = Q_d * T_2 = 78236.9 * \frac{0.5}{24} = 1629.93 m^3$ $A_{flc} = \frac{volume}{d_2} = \frac{1629.93}{3.5} = 465.69 m^2$ $A_{flc} = N \frac{\pi(\emptyset_2)^2}{4} , N=4$ $\emptyset_2 = 13m$

• C- Cheek S.L.R = $\frac{Q/N}{\frac{\pi}{4}(\phi_1^2 - \phi_2^2)} = \frac{78236.9/4}{\frac{\pi}{4}28^2 - (13)^2} = 40.5 \ m^3/m^2/d < 45 \ m^3/m^2/d \ safe$

• Design of V-notch weir:weir over flow rate = $\frac{q}{\pi \omega}$ $\frac{78236.9}{4 * \pi * 28} = 222.466m^3/m^2/d < 300m^3/m^2/d \quad ok \ safe$ the discharge through V-notch weir is given by :- $q = 1.46h^{2.5}$ Assume • h = 0.05m• $q = 1.46 * (0.05)^{2.5} = 0.816 * 10^{-3} m^3 / sec =$ 0.816lit/sec Number of required V – notch weir (N) = $\frac{Q}{r}$ $Q = \frac{78236.9}{4} = 19559.2 \ m^3/d = 0.226 \ m^3/sec = 226 \ lit/sec$ $N = \frac{226}{0.916} = 276.96 = 277 \ weirs$ distance between weirs center lines $=\pi \frac{\varphi}{N} = \pi \frac{28}{277} =$ 0.31m• design of pipes :-Inlet and outlet pipes Q_d of one tank = $\frac{74679}{4} = 78236$. $m^3/d =$ $0.226 m^3/sec$ *Inlet pipe velocity = 1.0 m/sec* $\boldsymbol{O} = \boldsymbol{A} \ast \boldsymbol{v}$ $\begin{array}{ll} 0.226 = A * 1 & A = 0.226 \ m^2 \\ A = \frac{\pi \varphi^2}{4} & 0.226 = \frac{\pi \varphi^2}{4} & \varphi = 0.536m & Use\varphi = 550mm \end{array}$

 $A = \frac{\pi \varphi^2}{4} \quad 0.226 = \frac{\pi \varphi^2}{4} \quad \varphi = 0.536m \quad Use\varphi = 550mm$ $v_{act} = \frac{Q}{A} = \frac{0.226}{\pi \frac{(0.55)^2}{4}} = 0.95m/sec < 1.5m/sec \quad ok$

Outlet pipe velocity = 0.6 m/sec Q = A * v 0.226 = A * 0.6 $A = 0.376 m^2$ $A = \frac{\pi \varphi^2}{4}$ 0.376 = $\frac{\pi \varphi^2}{4}$ $\varphi = 0.692m$ Use $\varphi = 700mm$

$$\begin{aligned} v_{act} &= \frac{Q}{A} \quad v_{act} = \frac{0.226}{\pi \frac{(0.7)^2}{4}} = 0.587 \text{m/sec} < 0.7 \text{m/sec} \quad ok \\ &\bullet \frac{Volume \text{ of sludge hopper}(\forall):}{Q_d * S * R} \\ \forall &= \frac{Q_d * S * R}{m * n * (1 - W_c) \gamma_s * 10^6} \\ \forall &= = \frac{78236.9 * 80 * 0.9}{3 * 4(1 - 0.96) * 1.03 * 10^6} = 11.393 \text{ m}3 = 10.87 \text{m}^3 \\ Assume the time of sludge emptying = 10 \text{min} \\ Q_{sludge} &= \frac{\forall_{sludge hopper}}{T} = \frac{11.393}{10 * 60} = 0.0189 \text{ m}^3/\text{sec} \\ Assume the velocity (v) = 1.5 \text{m/sec} \quad (1-2) \text{ m/sec} \\ A &= \frac{Q}{v} A = \frac{0.018}{1.5} = 0.0126 \text{m}^2 \quad A = \frac{\pi \varphi^2}{4} \quad 0.0126 = \frac{\pi \varphi^2}{4} \\ \varphi &= 0.126 \text{m} \quad use \varphi = 150 \text{mm} \end{aligned}$$

5.8 -Design of rapid sand filter:-

Assume :-

- Rate of filtration = $R.O.F = 150 \text{ m}^3/\text{m}^2/\text{d}$
- Surface area of filter = $A_{\text{filter}} = L^*W \le 100 \text{ m}^2$
- Thickness of sand layer = 0.65 m
- Thickness of gravel layer = 0.45 m
- Time of back wash = 15 min

Design:-

1-For stage (1) at 2040

$$Q_{d} = 1.07 * 1.4 * 133989.133 * \frac{250}{1000} = 50178.93 m^{3}/d$$

$$A_{filters} \frac{Q_{d}}{R.0.F} = \frac{50178.93}{150} = 334.52 m^{2} \qquad \text{Use filter 6*6 m}$$
Number of filters (N) $= \frac{A_{filters}}{A_{filter}}$

$$N = \frac{334.52}{8 * 6.5} = 8 \text{ filters}$$

$$\therefore \text{use 8 filters + 2 for back wash}$$

Pipe	Velocity (m/s)
Inlet	0.3-0.8
Outlet	1-2
Wash water supply	1.5-3
Wash water drain	0.9-2
Preparing filter to waste	1.6-3.2
Air supply	15-20

• For one filter: $Q = \frac{Q_d}{N} = \frac{50178.93}{10} = 5017.893 \ m^3/d = 0.058 \ m^3/s$ $Q_{backwasher} = A^* rate \ of \ backwash_1 = (6^*6^*) * 450 = 16200$ $m^3/s = 0.19 \ m^3/s$ $Q \ air = A^* rate \ of \ air = (6^*6) * (1^*6) = 216 \ m^3/d = 0.003 \ m^3/s$

• Design of pipes:

1. Inlet Pipe

 $V = 0.8m/s \quad Q = A * v \quad A = \frac{0.058}{0.8} = 0.0725 m^{2}$ $A = \frac{\pi \phi^{2}}{4} \quad \emptyset = \sqrt{\frac{4 * 0.0725}{\pi}} \quad \emptyset = 0.303 m \quad Use \quad \emptyset = 350 mm$ 2. Outlet pipe: $V = 2 m/s \quad A = \frac{0.058}{2} = 0.029 m^{2}$ $\emptyset = \sqrt{\frac{4 * 0.029}{\pi}} = 0.192 m \quad Use \quad \emptyset = 200m m$ 3. wash supply pipe: $V = 2 m/s \quad A = \frac{0.19}{2} = 0.95 m^{2}$ $\emptyset = \sqrt{\frac{4 * 0.95}{\pi}} \quad \emptyset = 0.35 \quad Use \quad \emptyset \quad 400mm$

2-For stage (2) at 2060

$$Q_d = 1.07 * 1.4 * 188370.6 * \frac{270}{1000} = 76188.372 m^3/d$$

 $A_{filters} \frac{Q_d}{R.0.F} = \frac{76188.372}{150} = 507.922 m^2$ Use filter 6*6 m
Number of filters (N) $= \frac{A_{filters}}{A_{filter}}$
N $= \frac{507.922}{8 * 6.5} = 10 filters$
 \therefore use 10 filters + 2 for back wash

5.9-Ground Tank

$$C_{1}=Q_{(max.monthly)}*0.5 hr$$

$$Q Max = 0.8232*24*60*60 = 71884.8 m^{3}/day$$

$$C_{1}= 71884.8*0.5/24=1497.6 m^{3}$$

$$C_{2}=0.4*Q_{avg}*day$$

$$c_{2}=0.4*20860.062*1=20344.02 m^{3}$$

$$C_{3}=Q_{(m ax.monthly)}*8 hr$$

$$C_{3}=71884.8*8/24=23961.6 m^{3}$$

$$C_{fire} = (120*P)/10000$$

$$C_{fire} = (120*188370.6)/10000=2260.4472 m^{3}$$

$$\forall=max.of c_{1} or c_{2} or c_{3}+4/5 c_{fire}$$

$$\forall=23961.6+4/5*2260.4472=25769.95 m^{3}$$

$$\forall=N*L*W*d$$

$$Assume:-L = 50 m \& W = 50 m \& d = 6 m$$

$$Use 2 tanks with L = 50 m \& W = 43m \& d = 6 m$$

	Stage (1)	Stage (2)
conduit pipe Losses	2 Ø 700 .195 m	3 ∅ 700 0.212 m
Screen Lossess	N screens =24 Ø=0.9m N bars =23 B=1.5Ø=1.05m 002m	N screens =24 Ø=0.9m N bars =23 B=1.5Ø=1.05m 0.02m
Sump	(12*4*4.5)m	(15*4*4.5) m
low Lift pump	2 pump + 1 stand by	5 pumps $+$ 3 stand by
Force Main Lossess	$\begin{array}{c} Q{=}~0.595\\ d{=}~1m\\ h_{\rm f}{}=0.096m\\ h_{\rm min}{}=0.091m \end{array}$	$\begin{array}{c} Q = 0.905 \\ d = 1 \ m \\ h_{\rm f} = 0.209 m \\ h_{\rm min} = 0.041 m \end{array}$
Rapid mixing tank	$\emptyset = 5m$ d= 2 m N = 1 tanks	$\emptyset = 5m$ d= 2 m N = 1 tanks
clari = flocculation	$\varnothing_{sed} = 32 m$ $\varnothing_{Floc} = 13 m$ $d_{sed} = 4 m$ $d_{floc} = 3.5 m$	$arnothing _{sed} = 32 m$ $arnothing _{Floc} = 13 m$ $d_{sed} = 4 m$ $d_{floc} = 3.5 m$
Filtration	8 Filters + 2 back wash = 10 filters	10 Filters + 2 back wash = 12 filters
Ground Tank	2 tank (L=50, W = 43, $d=5$)m	3 tank (L=50, W = 43, $d=5$)m

5.10-Elevated tank

	Time	Consumption lit/capita/2hrs	Accumulative
1	12 MN - 2Am	1	1
2	2-4	1.7	2.7
3	4-6	3.5	6.2
4	6-8	6.6	12.8
5	8-10	15.1	27.9
6	10-12N	16.2	44.1
7	10N-2PM	17	61.1
8	2-4	13.2	74.3
9	4-6	12.2	86.5
10	6-8	7.4	93.9
11	8-10	3.6	97.5
12	10-12Mn	2.5	100

A =30-12 = 18 B= 90-75 =15

20

$$Capacity = \frac{(A+B)P}{1000} + \frac{1}{5} Cfire$$

$$C = \frac{(18+15)P}{1000} + \frac{120*P}{5*10000}$$
I-For stage (2) at 2060

$$C = \frac{(18+15)188370.6}{1000} + \frac{120*188370.6}{5*10000} = 66668.319 \text{ m}^3$$
Assume NO. of tanks = 6 tanks.
$$Vone = \frac{6668.319}{6} = 1111.3865 \text{ m}^3 \text{ Assume } d = 8 \text{ m} \text{ A} = 138.9 \text{ m}^2$$

$$A = \frac{\pi\varphi^2}{4} \rightarrow \varphi = 1330 \text{ mm}$$
2-For stage (1) at 2040

$$C = \frac{(18+15)133989.133}{1000} + \frac{120*133989.133}{5*10000} = 4743.21 \text{ m}^3$$
Assume NO. of tanks = 4743.21/1111.3865= 4.26 using 5

5.11-Design of network
• transmission mains

$$Q_d = Q_{\text{max,daily}} + Q_{\text{fire}}$$

$$Q_{\text{av}} = 588 \text{ L/s & Q(\text{max,daily} = 1.8 *588 = 1059.58 \text{ L/s}}{= 1059.58 + 50 = 1109.58 \text{ l/S}}$$
• Main and secondary pipes

$$Q_d = \text{ the biggest of } (Q_{\text{max,hourly}} & Q_{\text{max,daily}} + Q_{\text{fire}})$$

$$Q_{\text{max,daily}} + Q_{\text{fire}} = 1109.58 \text{ l/S}$$

$$Q_d = 1470 \text{ l/S}$$

	• Minor distributions $Q_{1} = \text{Fire flow} = 501/S$							
	$Q_d = \text{Fire flow} = 50 \text{l/S}$							
	• Service connection. $rac{1}{7}$							
	 peak hourly flow = 1470 l/S Design consideration for distribution system 							
	1- Minimum				-	darv		
	2- pipes 200n					uur y		
				= 1-3 % for	main pipes	•		
	-	Velocity (v						
		•		point P = (2	5m) for res	idential ar	eas (30-40)
		_		and comme				
	• Hazen	William Eq	uation					
	<i>Q</i> =(0.2	78 C D2.63	S ^{0.54}					
	<i>C</i> = 120	From tabl	e					
	Section (1) :							
	Qd = 1109.5	8 l/s	Use pip	be 1Ø1000				
	Section (2) :							
	$\mathbf{Qd} = 1470 \ \mathbf{d}$	l/sec U	se pipe	4Ø 700				
	At $S = 0.002$	$2 \rightarrow 4 * 4$	55 = 182	20 P	opullation	n = 1883	370.6 c	
	Section (3) :							
	Qd = 0.7 * 1	470 l/S =	1029 l/	S				
	Use pipes 6				pulation =	=131859 (С	
	Section (4) :	1						
	Qd = 0.3*14		1/S					
	Use pipes 4			- 495 l/S	Populati	on = 565	11 18 C	
	Section (5) :	l			Topulati	.011 – 202		
	Qd = 0.05 *1		51/5					
	Use pipes 4			-1171/5	Dopullat	ion - 0/1	8 53 C	
	ose pipes 4	v 200 † 1	y 300	-11/1/0		ion = 941	0.33 C	
sec	population	Precent of total area	Q fire l/sec	Qmax daily + Q fire l/sec	Qmax hourly <i>l/sec</i>	Qdes l/sec	Q pipe S (0.02)	check
_	22							

1188370.6100%501109.58-1109.581163.5sa2188370.6100%501109.58147014701820sa	
	fe
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fe
3 131859 70% 50 776.706 1029 1029 1128 sa	fe
4 56511.18 30% 40 332.874 441 441 495 sa	fe
5 9418.53 5% 25 55.47 73.5 73.5 117 sate	fe

sec	Demand discharge	Cut pipes numbers	N0 of pipes	Diameter of pipes	length
2	1470	4	1 1	700 700	393 218
			1	700 700	381 212
	1029	5	1	500	466
3			1	500 500	462 265
			1 1	500 500	158 225
	441	5	1 1	400 400	457 436
4			1	400	359
			1 1	400 300	286 142
	73.5	5	1 1	200 200	645 645
5			1	200	284
			1 1	200 300	326 366

5.12- Wast Water Treatment

Stage(2) • In summer : Qav=0.8*588=470.4 lit/sec • p=188370.6capita $Q=(1+\frac{14}{4+\sqrt{188.370}})*470.4 = 948.10 m^3/s$ Qinf = 0.2*Qav waste = 0.2 * 470 = 94 lit/sec Qmax = 1.8* 470.4+94 = 940.72 lit/sec = 0.940 m3/sec • In winter : M.F = $0.2p^{0.167} = 0.2 * (188.3706)^{0.167} = 0.48$ Qmin = 0.8*0.48*470.4+94 = 274.74 lit/sec Stage (1) :

• In summer :

Qav = 0.8 * 387= 309lit/sec · P = 133989.133 capita

 $P.F = \frac{18 + \sqrt{133.989}}{4 + \sqrt{133.989}} = 1.89$

Oinf = 0.2 * 309 = 61.8 lit/sec

Qmax = 1.89 * 309 + 61.8 = 645.8 lit/sec

• In winter :

 $\mathbf{M.F} = \mathbf{0.2} * (\mathbf{133.989})^{\mathbf{0.167}} = \mathbf{0.45}$

Qmin = 0.8 * 0.45 * 309 + 61.8 = 173.82 lit/sec

Lt = 15468 m

 $\frac{Qmax}{Lt} = \frac{940}{15468} = 0.07$

∅ Mm	Slope %	Vfill m/s	Q N L/S	$rac{d_{max}}{\emptyset}$	$\frac{Q_{max}}{Q_{fill}}$	Qmax*(1/sec) For each pipt	L survice
		ŕ					(m)
200	5	0.71	22			20	285
250	4	0.74	36			32	455
300	3.33	0.67	54			49	700
350	2.8	0.68	75			68	970
400	2.5	0.80	100	0.75	0.90	90	1285
450	2	0.77	122			110	1570
500	1.8	0.79	155			140	2000

600	1.4	0.97	223			200	2855
700	1.3	0.84	323			291	4150
800	1.0	0.81	407			431	6155
900	0.8	0.78	496	0.90	.06	526	7510
1000	0.8	0.84	660			700	10000

8- Conclusion

Recognizing the importance of enhancing sanitation practices is more effective than simply introducing technological advancements. This approach is considered advantageous for the community as it emphasizes collaboration between suppliers and beneficiaries through dialogue and information sharing. Ultimately, individual users have the ultimate authority in deciding whether to adopt or reject new technologies. The success of the project lies in the hands of these users, as the value of the investment relies not only on community support but also on the acceptance of families and individuals. It is crucial to convince individuals about the benefits of improved hygiene and the advantages that come with adopting new technologies, outweighing any associated risks. Providers must also take into account the social context and limitations that influence personal decisions. By understanding the community's perspectives, providers can identify positive attributes that may elicit negative responses and utilize the community's values, beliefs, and practices to drive positive change.

9-REFERENCES

- 1. Sanitary Engineering. Prof. Dr. Kamal Radwan.
- 2. Reynolds, T.D. and Richards, P.A. "Unit operations and Processes in Environmental Engineering", Second Edition, PWS Publishing Company, 1996.
- 3. Gray, N.F., "Water Technology", Arnold Publishers, 1999.
- 4. Clark, J.W., Niessman, W. and Hammer, M.J. "Water Supply and pollution control", Third Edition, Harper & Row publishers, 1977.
- 5. Laws of The Minister of Health and Population No. 458 of 2007 regarding the standards and specifications for potable water.
- 6. Laws of The Minister of Irrigation and Water Resources: Law No. 48 of 1982 regarding the protection of the Nile River and waterways.

STANDARDS

- 1. The Egyptian Code for Drinking Water and Sewage Networks, 2010.
- 2. The Egyptian Code for Sewage Treatment Plants.
- 3. The Egyptian Code for Water Treatment Plants.